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I. INTRODUCTION

There have been many studies of geophysical fluid dynamics that deal with flow under

the combined influence of buoyancy and rotation. The flows which are seen in cylindrical

annulus experiments in which the thermal forcing and the rate of rotation are varied [1,2] range

from simple axisymmetric flows to a full spectrum of waves interacting in a chaotic fashion. In a

hemispherical shell space-laboratory experiment, Hart et al. [3] found a wide range of flow

regimes depending upon the heating configuration and rotation rate. Such experiments are aimed

at enhancing our understanding of atmospheric and oceanic dynamics by studying controlled,

simple systems in which the flow dynamics can be isolated. However, any experiments arc

subject to instrumentation errors that affect the fidelity of the controlled conditions and to the

data acquisition difficulties that prohibit detailed analyses of the phenomona under investigation,

as well as to the expensive cost that discourages systematic and wider range parametric studies.

A carefully developed numerical model that can simulate the experiments is a viable approach to

the solutions of these problems. This approach allows more accurate control on the experimental

conditions. It provides a complete data source for performing diagnostic studies. It can cost very

little to run a high resolution model on a supercomputer if the model is coded efficiently. Our

objective has been to develop an effective model that is able to simulate a broad range of

configurations, including those mentioned above.

The purpose of this paper is to describe the GEOSIM (geophysical fluid flow simulation)

model which has recently been developed at the Marshall Space Flight Center (MSFC). It is a

result of extensive renovation and expansion of the model used by Miller and Gall [4,5]. The

model has been validated by comparing its results with those of laboratory experiments and other

numerical models. Miller and Butler [6] and Miller and Fehribach [7] have given recent reports

on the use of this model, although their papers use only part of the full capability of the model.

In this paper, we present other validation results which are of interest to the community. These

cases are: (1) the steady baroclinic wave in a rotating side-heated annulus [8], (2) the amplitude

vacillation studies of Buzyna et al. [9], (3) transition to baroclinic waves in the bottom-heated

annulus.experiments at MSFC [10], and (4) the Spacelab Geophysical Fluid Flow Cell (GFFC)

observations described by Hart et al. [3].

II. DESCRIPTION OF THE MODEL

A. Equations

The model is based upon the Boussinesq Navier-Stokes equations in rotating spherical

coordinates. The equations, with the advective terms written in flux form, are as follows. The

definitions of the symbols are given in Table 1.



Table 1. List of Symbols.

a

d

g

go

k

P

?.

t

T

U

V

W

!¢,

H

Po

V

I1

Inner radius

Depth

Body force ("gravity")

Gravity at r = a

Longitudinal wavenumber

Pressure

Radial coordinate, distance from center

Time

Temperature

Longitudinal velocity (positive for westerly flow)

Meridional velocity (positive for southerly flow)

Radial velocity

Thermal expansivity

Latitudinal coordinate

Thermal diffusivity

Longitudinal coordinate

P/Po (often referred to a "pressure" in text)

Reference density

Kinematic viscosity
Rotation rate
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The continuity equation is as follows:.
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(vcos_) + 1 _ (wr 2)+

I _u
• cos _ _i_ r'_ _ _ = O.

(5)

The spherical three-dimensional Laplacian is:

1 _+ 1 _ (COS_)+_ _r(r2_r). (6)

B. Numerical Method

The model uses a mixed spectral and finite difference technique, similar to that used by

Quon [11] for a cylindrical model. In the azimuthal direction, each field is decomposed into

Fourier components of the form Akexp(ikX ), where k is longitude, k is a given wavenumber (0 for

axisymmetric), and A k is the complex amplitude of one of the dependent variables. By

substituting the Fourier series for each variable into equations (1)-(4) and operating on both sides



by the orthogonalization procedure, one obtains a set of equations for each Fourier mode [11].

These equations can be simplified in a consistent manner to represent various mathematical

systems in different degrees of complexity. GEOSIM is able to solve five classes of problems,

which are handled consistently with the same numerical algorithms:

1. Axisymmetric flow

2. Linear instability problem with respect to a previously computed, fixed axisymmetric

state

3. Linear instability problem with respect to an evolving axisymmetric state as in 1.

4. Nonlinear problem for single and multiple waves, in which the only quadratic terms

retained are those due to the interaction between the wave and axisymmetric parts of the flow

(hereafter called the wave-mean flow interaction case)

5. Fully nonlinear problem for multiple waves with complete wave-mean and wave-wave

interactions.

Note that modes 2 and 3 compute wave structure and its corresponding growth rate which

asymptotically becomes the fastest among the modes of the linear system. The detail of

computing the eigenfunction and the eigenvalue is given in the next paragraph. Mode 4 allows

an arbitrary sequence of wavenumbers in the model. Mode 5 deals with a simple spectral

truncation series with wavenumber being multiplied by a fixed harmonic factor. Therefore, in

addition to the traditional spectral resolution 1 to K, the model can solve for the same number of

wave components but in a higher harmonic, e.g., wavenumbers 2, 4, .... 2K. In mode 5

application, the well-known transform method (see ref. [12]) is employed to compute the spectral

transformations of nonlinear terms in the equations. Details of this method are given in section

II.F.

The method of computing the largest real eigenvalue and its associated eigenfunction

deserves special attention. The model is integrated forward in time in the expectation that the

solution will eventually become dominated by the fastest-growing (or slowest-decaying)

eigenmode. At each time step an estimate of the linear, complex growth rate (to) is calculated for

the wave by spatially integrating the temperature tendency terms. The term (-o)Q) is added to

each of the wave prognostic equations (where Q refers to the prognostic variable). If the fields

become dominated by a single fastest-growing (or slowest-decaying) eigenmode, this additional

term stops the wave from growing (or decaying) and propagating. For most situations, this

indeed occurs, and the system of equations (with the additional term -toQ) has a steady state

solution. The use of this technique avoids the situation of the model "blowing up" due to

exponential growth, it makes the solution independent of the time-stepping formulation, and it

allows the use of differential time steps to enhance the convergence rate.



A similar procedure can be applied as an option to obtain a steady state solution for the

mode 4 application when the solution includes a wave of constant structure which propagates

azimuthally. In that case, only the imaginary part of the growth rate is used in the additional

term. After a steady wave is achieved in the solution, this procedure stops the wave from

propagating in the azimuthal direction and permits the calculation of a time-independent solution.

In the cases in options (1) through (4) where the steady state is the desired result, the use

of differential time steps (different values of the time step for different equations) can

dramatically speed up the rate of convergence. In particular, this is true for cases in which either

momentum or heat (usually the latter) has a much lower diffusivity than the other. The time step

constraint in the cases of interest is often due to the diffusive terms; hence, the time step for the

more slowly diffusing component can be made several times that of the other component without

loss of numerical stability or accuracy (for steady state flows). Of course, variable time steps arc

never used in cases where the time evolution is important (for example, vacillation studies).

C. Spatial Discretization

1. The Grid System. The model uses a staggered grid system (see Figure 1) similar to

that of Quon [11]. The physical domain is partitioned into an arrangement of J by K (JJ-2 by

KK-2, in the code's nomenclature) elements in the meridional and vertical directions. The

variables u, T, and FI are defined in the center of the elements; v is defined at the middle of the

vertical boundary of each element (i.e., on the sides); and w is defined at the middle of the top

and bottom of each element. Note that the grid system includes artificial points outside the

physical domain, for efficiency in computation and accuracy in imposing the boundary

conditions. The grid can be stretched in both directions, so that finer resolution can be obtained

in regions of strong gradients. The initialization routine of the model constructs a stretched grid

which has grid spacings that are determined based on the formula sin(_'y) + 5, where y ranges

from zero to one (proportional to physical distance) and 5 is an input parameter. For larger 5 the

grid stretching is less severe. There is also an input parameter which adjusts the location where

the grid is to be stretched. This is done by moving the sine function so that the desired amount of

stretching in the location of interest is achieved. After the spacing function is determined, the

grid intervals are multiplied by the appropriate constant such that they are in the proper units.

The method differs from that of Quon, who transforms the equations to a stretched coordinate

system and then discretizes with a constant interval. The advantage of the current method is to

achieve increased flexibility, which is important because of the requirement to use the same

model for a variety of geometries and flow types.

2. Finite Differencing. The spatial derivatives in the Fourier transformed equations are

approximated by a control volume discretization procedure. Standard centered difference

approximations are used for the derivatives in each of the equations with the following

exceptions.

For the temperature equation, the terms representing advection of heat by the mean

meridional flow are evaluated as a weighted average of upwind and centered differences. The
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relativeweightsgivento thetwo differencesis inputby theuser. A heavierweighton the
upwindschememayhelp suppressoscillatorybehaviorof thenumericalsolutiondueto the
splittingpropertyinherentin thecentereddifferencingscheme.However,toomuchupwind
differencingintroducesartificial viscosity(seeref. [13]), whichmaydegradetheaccuracyof the
solution. Thus,therequirementsfor upwinddifferencingmustbeevaluatedfor eachindividual
problem. In general,wehaveusedupwinddifferencingaslittle aspossible,introducingthe
smallestfractionnecessaryto avoidsmall-scalefeatureswhich areclearlynumerical(which
occurdueto theadvectivetime scalebecomingsmallerthanthediffusivetime scale).

Thesecondexceptionto thestandardcentereddifferencingformulationdealswith the
evaluationof theflux termsin the v and w equations. In that case, the Warn-Varnas et al. [14]

"Scheme B" is used in order to conserve kinetic energy while retaining second order accuracy.

D. Time Discretization

A two-level scheme is used for the time differencing, which minimizes the computer

memory requirements. First-order forward differencing is generally used, although exceptions to

this rule are made according to numerical stability criteria. Those deviations are described in the

following paragraphs.

In order to lessen the time step constraint due to the presense of inertial gravity waves, the

Coriolis and the body force terms in the w and v equations use newly updated values of u and T

(i.e., u and T are updated first, before the tendencies of v and w are calculated). While this

introduces no complication for the axisymmetric part of the flow where u is not involved in the

continuity equation, mass continuity requires that all three velocity components be updated

simultaneously in the wave equations. In the latter case, a tentative value of u, based upon the

pressure at the previous time step, is used in the Coriolis terms for v and w. Experience has

shown that the difference in the results obtained between this update procedure and the standard

forward differencing scheme is insignificant, while the gain in allowable time can be sizable

when the rotation rate or the vertical stratification is large.

To further permit longer time steps, there is an ADI (alternating direction implicit) option

for the diffusion terms and those involving advection by the mean flow. The ADI method treats

terms implicitly in one direction and explicitly in the other direction for even time steps, and on

the odd time steps switches directions. The following is a description of the ADI method applied

to the vertical direction at odd time steps, using the Tequation as an example. Letting n+l and n

be the forecast and current time levels, respectively, the equation is discretized as follows:

'd-iOT,8, =----_AT_ T"+'-T"At = -(D,T"+'+D,T'+D_,Tg+_:(L*,T "+1+L_T"+I._T"+'), (7)

where D_., D_p, and D, represent the centered finite difference approximation of flux divergences

due the axisymmetric components of u, v, and w, respectively, and the L2's represent the finite

difference analog to the Laplacian components. The velocity components (valid at time level n)



areincluded in our definition of the operator D. The equations are rewritten in terms of AT and

7". This is done by adding and subtracting the terms on the fight-hand side that are at time step

n, then replacing (T _+I - T _) with AT and gathering all the terms involving AT on the left-hand

side:

[1- + -0,] =discretizedformofthe
fight-hand side of (4)

involving values at time step n.

(8)

When (8) is expanded into matrix form, it is a tridiagonal matrix system for AT and is

solved by Gaussian elimination. At even time steps, the r-derivatives on the left-hand side are

replaced by the _-defivatives. Note that the _, part of the diffusion is implicit and the _, part of

the advection is explicit at all time steps.

E. Poisson Equation for Pressure

At each time step, a pressure field must be found which results in mass continuity (zero

divergence) for the new velocity field. The procedure is similar to that of Williams [15]. A

Poisson equation is derived by first writing equations (1)-(3) in vector form:

3v
-_ =- VH+G, (9)

where V is the velocity vector and G represents the terms on the right-hand sides of equations

(1)-(3) other than the pressure gradient terms.

Replacing the left-hand side of (9) by forward differences and multiplying both sides by

At gives:

v "+1 - v" = -(vii' + v') at. (10)

Fl* is the change in pressure from the previous time step and the gradient of the old FI is included

in the definition of G*. Applying the divergence operator on (10), setting the divergence of the

new velocity vector to zero, and rearranging terms gives:

V. (v" +G'A0 (11)V2l-l* = At

Note that the term V. If is kept on the fight-hand side since there is some round-off divergence

from the previous time step. The boundary condition used is that the normal derivative of rI* is

zero. This is consistent with our formulation of the Laplacian, in which the normal derivative

across the boundary is taken to be zero (justifiable because the momentum equation is not used to



predicttheboundaryvalues). As explainedbyWilliams [15], thisconditionresultsin H* being

actually a quantity equal to the physical pressure correction except at the boundaries. A

correction to I-I° could then be applied in order to recover the physical quantity; however, that

step is not necessary, since the boundary derivative of YI is not required in solving the

momentum equations. The elliptic equation with the Neumann boundary condition is solved

using a direct method that is vectorized for the CRAY-XMP [16]. The solver has no problem

with the fact that there is not a unique solution for the axisymmetric part. It should be noted that

the solution of the pressure equation is the most time consuming part of the model. For this

reason, we provide a control that skips the pressure update if the maximum absolute value of the

divergence is smaller than a prescribed value.

F. FFT - Method for Solving for Nonlinear Terms

Around an azimuthal ring, every dependent variable is expanded in a discrete complex

Fourier series as follows:

K

q(kj ) = _-_1¢Q kexp(kj ), (12)

where _y = 2nj/L, L is the number of intervals in the azimuthal direction, and K is the truncation

limit of wavenumber k. The Fourier (or spectral) coefficients, Qj,(r,_,t), are computed by the

following:

/.,

Q, = _ = __1q(_) exp(/k _.j). (13)

Note that (13) is exact only if the product q(kj)exp(ik_ 7) is a truncated.trigonometric series with

maximum wavenumber less than or equal to L-1. Otherwise, aliases would result. Hence, if

q(_7) represents a product of two real variables representable by the same spectral series with

truncation 'K, then L > 3K+l must be satisfied. The actual calculations of (12) and (13) are

carried out by a vectorized fast Fourier transform (FFT) algorithm [17]. This FFT is the same as

that used by the NCAR Community Climate Model which limits L to have multiplication factors

of 2, 3, and 5 only. This does not place a constraint upon K, although since optimal values for L

as a function of the number of waves are tabulated in the present program, the number of waves

must be __40. This number can easily be increased by expanding the table.

Since q(_,j) is real, the complex discrete Fourier transform is conjugate symmetric; i.e.,

Qk = Q*-k. Hence, only k = 0 to K Fourier coefficients are calculated. In fact, (12) and (13) can

be rewritten in a real trigonometric form as follows:

K

q(_'J3½ ao + _ (akcos k kj + bk sin kj ), (14)



where

2 £

ak = rj=_._q(_) cos k_,i (15)

2 L,

bk = -7-_ q(_,i) s/nk_.j.
_1

(16)

Hence, for each complex coefficient, Qk, the real and imaginary parts are one half of the

coefficients of cosine and sine series, except for the k = 0 component. The Fourier transform

method described above (see also ref. [12]) is efficient in dealing with the nonlinear (quadratic)

terms in the governing equations (1)-(4). In short, all variables required in the calculations are

first synthesized into physical space, where the quadratic factors (e.g., uv, v2, vT, etc.) in the

nonlinear terms are calculated. The spectral coefficients of those terms are calculated using the

FFT. These spectral coefficients are then used in the finite differencing scheme to obtain the

nonlinear tendencies for each wave component. Note that the FFT is used only when a fully

nonlinear run of the model is made (mode 5). Otherwise, the nonlinear terms (which do not

involve wave-wave interactions) are calculated in spectral space, on the r-_ grid.

G. Boundary Conditions

The model fluid is confined in a latitudinal channel of arbitrary width (which may include

the pole as part of the fluid domain) and depth around the polar axis. The use of latitudinal walls
at any latitude is an advantage of the hybrid scheme; this would not be possible if, for instance,

spherical harmonics were used. Each of the four computational boundaries has the option of

being free-slip (zero stress) or no-slip (zero velocity), and each boundary may have a heated

(fixed temperature) or adiabatic (zero normal gradient) temperature boundary condition. The

temperature profile imposed upon a differentially heated horizontal boundary can have a linear,

sine, or logarithmic shape, where the latter is defined by Equation (7) in Miller and Fehribach

[7]. The vertical boundaries for the temperature have a linear profile. It is straightforward for a

user to program a different temperature profile. The values of vertical velocity (w) on the top

and bottom are set to zero regardless of the boundary condition configuration. The value of the

v-component is set to zero on the two meridional boundaries, except for the case in which the

domain extends to the pole (next paragraph).

Polar Cases. When there is a pole in the domain (e.g., a full cylinder or spherical shell),

the computional boundary condition there is non-trivial. The pole is a singular point in the

coordinate system (i.e., the velocity components are not well defined there), but there are no

physical constraints on the flow. Fortunately, the grid is structured such that a polar boundary

condition is required only for the v-component of velocity. The values for the other variables are

arbitrary because they are always multiplied by zero in the finite difference scheme. This is due

to the fact that the differences are in flux form and the area of the pole itself is zero. However,

the polar value of v is used in the calculation of viscous stress one-half grid interval from the pole

in order to calculate the viscous tendency for v at the point one grid interval from the pole. By

10



considering a small neighborhood of the pole, it may be easily shown that the only Fourier

component which includes non-zero flow at the pole is the wavenumber one component.

Therefore, a correct condition for the axisymmetric and all wave components except

wavenumber one is to set v zero at the pole. For the wavenumber one component, the correct

boundary condition is zero meridional gradient. This arises from the fact that the flow resulting

from the wavenumber one component along a great circle passing through the pole must be

symmetric about the pole and must have a finite (Cartesian) derivative at the pole. This

derivative is approximated by setting the polar value equal to that one grid point from the pole,

which is only first-order accurate.

To produce smooth cross-section plots, polar values of the other components are needed

when plotting. A zero meridional gradient is used for the axisymmetric components of w and T,

and zero amplitude values are used for the wave components. The boundary condition on u is

taken to be the same as for v.

III. MODEL VALIDATION

A. Axisymmetric Flow, Linear Waves, and Hysteresis

Verification of the model was performed in the order of complexity of the problem.

Axisymmetric results were compared and agree well with previous results by Williams [8], Quon

[11], and Miller and Gall [4,5]. (Note that, while the computer code was rewritten, there was no

fundamental change in the algorithm for the axisymmetric case from the Miller and Gall papers ).

Linear wave results were compared with Miller and Gall [5]. Exact agreement in the latter case

was not obtained nor expected, since the Miller and Gall model made the hydrostatic assumption

in the wave component of the flow. The next step was to verify the model with the addition of

the nonlinear wave-mean flow terms. Miller and Butler [6] used the model in mode 4 to

calculate hysteresis in the transition curve as found experimentally by Fein [1], and good

agreement with the experiment was obtained, as shown in Figure 2.

B. Steady Baroclinic Annulus Wave: Comparison with Previous Work

Attempts were made to validate a steady wave case with Williams [8] and Quon [ 11].

Note that Quon's model is essentially the same as our model in the single wave-mean flow

interaction mode, while William's model is similar to our model in a multiple wave, fully

nonlinear mode. With the periodicity condition applied to one-fifth of the annulus, the wave

components resolvable in the Williams model are 5, 10, 15, etc. Figure 3 shows the azimuthal

mean state from the GEOSIM model in mode 4, including only wavenumber 5. In comparison

with the Quon and Williams results (which share resemblance), the wave has smaller amplitude

and the mean fields are not affected as much by feedback from the wave. However, the

differences reduced considerably when the model was run in fully nonlinear mode with waves 5

and 10 included. When wave 15 was also included (Figure 4), we obtained results that virtually

agreed with those of Quon and Williams. We also ran GEOSIM in single-wave mode with wave

4 instead of wave 5 selected, and found that the resultant axisymmetric state and wave amplitude

II
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Figure 2. Amplitude of the temperature wave as a function of rotation rate as determined by Fein

[1] (dashed curve) and Miller and Butler [6]. As the rotation is increased with an axisymmetric

state established, the model predicts transition to baroclinic wave flow at point A. As the
rotation rate is decreased with a wave established, the model predicts transition to axisymmetric

flow at point F.
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Figure 3. Temperature, zonal velocity, and meridional stream function from the azimuthal mean

state computed by GEOSIM in mode 4 for the case of Williams [8] when a single wave (5) is

used.
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Figure 4. Similar to Figure 3, but computed by GEOSIM in mode 5 (fully non-linear) with

waves 5, 10, and 15 included.
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were similar to the previous works. The discrepancy between our single wave case and that of

Quon is left unexplained.

C. Vacillation

Wave amplitude vacillation is characterized by a periodic growth and decay of a

baroclinic wave with a similar periodic decrease and increase of azimuthal mean baroclinicity.

GEOSIM in mode 5, with wavenumbers 1 through 15, was run using the same geometric and

dynamic parameters as one of the experiments of Buzyna et al. [9]. Figure 5 shows the time

variations of kinetic energy integrals for the axisymmetric and wave components in about two

vacillation cycles after 21,400 seconds (or approximately 600 rotations) of model integration

time. As observed in the laboratory, wave 4 dominates after the system equilibrates to a steady

vacillation. Wavenumber 8 and higher harmonics are present, but there is no side-band

contribution to the energy spectrum. The period of vacillation is estimated to be 45 rotations,

which is two-thirds of what was seen in the laboratory experiments. Figure 6 shows the

temperature distributions of the symmetric state and wavenumber four disturbances at the middle

level of the model fluid. The four diagrams represent the synoptics at the four phases of a wave

amplitude vacillation cycle, denoted by WL, SH, WH, and SL. About 0.3 °C difference in

temperature variation between a lowest wave (WL) and a highest wave (WH) stage can be

detected, in reasonable agreement with the observations. The movement of the arrow mark

indicates that waves travel around the annulus at a frequency about two times as fast as the wave

amplitude changes, consistent with the experiments. A more detailed analysis of this and other

numerical experiments will be presented in a future paper by Lu, Miller, and Butler.

D. Bottom-Heated Cylindrical Annulus

Laboratory experiments in which a temperature gradient is imposed on the lower surface

of a cylindrical annulus have been performed at MSFC. The outer vertical wall of the annulus is

also constrained to have a fixed temperature profile, while the upper and inner walls are made of

a relatively non-conducting material (Plexiglass). Many of the results of these experiments are

similar to those with the more traditional, side-heated annulus. For example, a boundary

representing the transition between stable, axisymmetric flow and that with baroclinic instability

in thermal Rossby number-Taylor number parameter space has a similar shape to the side-heated

and -cooled experiments. The model was used to predict the transition curve, including number

of the initial waves. Figure 7 shows the comparison between the laboratory experiments and the

calculated transition. The agreement in placement of the transition curve is fair, but it is not as

good as a similar comparison in the side-heated and -cooled case. The agreement in terms of

wavenumbers is excellent. The authors believe that the differences in the placement of the

transition curve is due to imperfect thermal boundary conditions in the experiment. Significant

improvement from a previous comparison was obtained by adding more insulation to the

apparatus in the laboratory experiments.
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Figure 5. Time variations of kinetic energy integrals for the axisymmetric and wave components
as calculated by GEOSIM for a vacillating case of Buzyna et al. [9], see case B-j of Pfeffer et al.

[19].
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E. SphericalShell

Comparisonshavebeenmadeof fully three-dimensionalflow patterns predicted by the

model with experiments performed on the Spacelab 3 mission with the Geophysical Fluid Flow

Cell (GFFC). Agreement was excellent to the extent that the experimental data allow

comparison (which is limited to flow patterns). Documentation of these comparisons will appear

in a separate paper by Miller and Leslie. More detailed comparisons can be made between the

present model and another one, namely a model based on spherical harmonics developed by Gary

Glatzmaier of Los Alamos National Laboratory [18]. Note that the Los Alamos model is

constrained to have a free-slip condition at the equatorial wall, so the present model was run with

that condition as well. An initial condition was determined by integrating the Glatzmaier model

for a short time (see Figures 8 and 9). The fields at that point were then used as initial conditions

for both models. After 9 minutes, the results from the two models are compared in Figures 8 and

9 for temperature and for radial velocity at mid-depth. Note that the agreement is remarkable, in

spite of the fact that the patterns have changed significantly from the initial conditions. Further

comparisons are in progress for a case with stronger gravity, in which the fields change more

quickly and in which the results have been shown to be extremely sensitive to initial conditions.

These comparisons will be published separately by Johnston and Miller.

IV. SUMMARY

The MSFC-developed model GEOSIM has been shown to be an extremely powerful tool

for simulating a wide range of geophysical flow problems. The model employs finite differences

in the meridional plane and spectral decomposition in the azimuthal direction, which results in a

code which is flexible in terms of domains and boundary conditions. The use of a spectral

transformation in the azimuthal direction allows the calculation of axisymmetric states, linear

waves, and states with wave-mean flow interaction only. The code has been validated by

comparing its results to both experimental and numerical studies. The example cases that are

given in this paper demonstrate the types of fluid flow problems which GEOSIM was designed

to solve. Further research at MSFC using the model is planned, and the authors welcome

inquiries from researchers with similar needs and interests who may wish to use the model.
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Figure 8. Temperature fields from the comparison between GEOSIM and the model of

Glatzmaier [18]. The upper plot is that of the initial condition (same for both models). The

middle plot is from the GEOSIM model 9 minutes later, and the lower plot is from the

Glatzmaier model at the same time.
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Figure 9. Similar to Figure 8, but for radial velocity component.
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APPENDIXA: User's Guide

The current version of the GEOSIM model (1990) was developed and runs on the CRAY

XMP at Marshall Space Flight Center (MSFC). While this User's Guide often specifically refers

to the Cray, we have generally avoided using instructions that are unique to this machine. With

the construction of proper operating system commands, the model should run at any site that

supports a FORTRAN 77 compiler. For example, it has been successfully run on an IBM RISC

6000.

Compilation Procedures

The model's source code is contained in four ASCII files: one for the main program and

subroutines, one for subroutines used in the FFT and the elliptic equation solver, one for the

derived parameter statements and common blocks, and one for the key parameter statements.

The file with the common blocks is "included" in the main program and most of the subroutines

at the time of compilation. The sizes of the work arrays are set by the user to the desired value in

the key parameter statements. In the current implementation on the Cray, these parameter

statements are in the same file as the operating system commands that compile the code. Note

that, while the radial and latitudinal grids used must be the same as the array dimensions, the

number of waves can be less than or equal to the compiled dimension. The following key

parameters must be set at compilation:

MIIW:

J J:

KK:

NONCASE:

IWDIM:

Maximum number of wave components (excluding the axisymmetric

component)

Number of grid points in the meridional direction. Note that the number

of interior grid intervals in JJ - 2.

Number of grid points in the vertical direction. The number of interior

grid intervals is KK - 2.

Selection for mode of operation (determines whether FFT is used).

= 1: Fully nonlinear run

= 0: Any other mode of operation

Dimension of the work array for the elliptic equation solver. A formula

is given for estimating the minimum value of this parameter. If the

value is too small, an error message is printed and the model does not

run.

Restart Files and Restart Procedure

At the end of each integration, each wave component (excluding the axisymmetric part) is

written to a separate logical unit (7 and above), and all waves are concatenated and written to a

single logical unit (99). (Only one of these sets of files--whichever is more convenient for the

user--needs to be saved.) The axisymmetric data contain grid information, are slightly different

in format from the wave data, and are written to logical unit 1. The user can choose to save

PAGE_INTENTIONALL.Y _AI_
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whicheverfiles desiredfor analysisand/orrestarting the model, There arc several ways to

initialize the model:

ISTART = -2: Restart from scratch - This uses boundary temperature and

profile information within the source code m set up the initial axisynmctric

temperature field. (The interior temperantm field can either be a constant value

or an interpolation of the boundary values. This is determined by the input

parameter "TINIT," which is on the last line of the input deck.) ff waves arc

included, they are initialized with a small temperature disturbance (randomly

oriented in the azimuthal direction) located in the middle of the meridional

grid.*

ISTART = - 1: Axisymmctric restart - A previously computed axisymmewic

field on unit 1 (with grid information) is used as an initial condition. The

waves are initialized in the same way as a "scratch" run.

ISTART = 1: Both axisymrnetric and wave fields are read from units 1 and 7

(and up, if necessary), respectively. Note that the wave fields must be in

ascending order

*There is a call m the random number generating routine RANF in the subroutine INITIA. This

is a spot where the user may need to make a change for a different computer installation.
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Input Parameter File

The unit 5 input file (usually concatenated with the operating system commands to run

the model) prescribes various numerical and physical parameters necessary to run the model.

Table A. 1 defines each of the input parameters. The grid and boundary temperature parameters

are used only in the "scratch" starts; other parameters are used in all run modes and replace any

values stored in the axisymmetric save file. For example, if an axisyrnmetric field is run with

omega = 2.0 and restarted with omega = 1.8 in the runstream, the value of 1.8 is used in the new

run. Unless a "delta omega" of-0.2 is input, the model does not add the differential spin-up

rotation; that is, the u-field in the input file is taken to be relative to the new rotation rate.

Boundary conditions on temperature cannot be changed in a restart. (It would be straightforward

for the user to write a program which edits the restart file to change them, if desired.)

Diagnostics such as integrated kinetic energy are calculated at intervals.which depend on

the "NSTEP" and "ISKIP" factors. If the number of steps (NSTEP) is set to 5000 and the skip

factor (ISKIP) is set to 1000, diagnostics.are be written to the output file on steps

0,1,1000,2000...,5000. If ISKIP is set to zero, the default factor of NSTEP/200 is used for

ISKIP, and therefore the diagnostics are written 202 times. A summary page, which contains

basic information for the axisynunetric state and all of the waves, is written after every 5 pages

of diagnostics.

The "IRUNCD" option corresponds to the mode of integration that is to be run in the

model. A "1" indicates an axisymmetric only run, "2" - linear waves only, "3" - axisymmetric

and linear waves (no interaction), "4" - axisymmetric and nonlinear wave (wave-mean flow

interaction), and "5" - fully nonlinear wave run. The value of IRUNCD affects the interpretation

of the "WAVE-NUMBERS" line. In modes 2 through 4, this refers to the wavenumbers

included in the calculations. In mode 5, this line lists the waves to be included in the printed

diagnostic output, the "WAVE FACTOR" indicating which set of wave numbers to run. For

example in mode 5, if the number of waves is set to 10 and the wave factor is set to 3, then waves

3,6,9...30 would be included in the calculation. Table A.2 gives a list of memory and time

requirements for each run option for both cylindrical and spherical example runs.

The boundary conditions are defined by the values of "IBTMP" (temperature) and

"IFREE" (u,v,w components). Both IBTMP and IFREE are arrays of four elements which

correspond to the four sides of the grid. A heated wall or a no-heated wall are specified by

setting the respective IBTMP to -1 or 1. Similarly, for rigid or free walls, set IFREE to either -1

or 1. The values of IFREE and IBTMP do not influence polar conditions for the computations,

although to obtain good plots they should both be set to 1.

Printed output and plots

Selected output is sent to unit 6. The majority of the input stream is written within the

f'LrSt2 pages. After that, diagnostics for the axisymmetric field are given (if not running in

IRUNCD = 2 mode), and then the waves are written (one per page). Diagnostics include

27



Table A. 1. GEOSIM Input File Definitions.

Parameter Definition

NSTEP

ISKIP

IRUNCD

IBTMP

IFREE

IPROF

COND

VISC

EXPAN

OMEGA

DOMEG

DELT

DTFAC

AXIFAC

GAMT

GAMV

R_MAX

ICONV

ISTART

PHI1

PHI2

Number of time steps

Skip factor for diagnostics (leave zero for default value of

diagnostics calulated 202 times)

Mode of model integration

Temperature boundary conditions

Momentum boundary conditions

Profile for initial horizontal temperature gradient

Thermal diffusivity

Kinematic viscosity

Thermal expansivity

Rotation rate

Used for spin-up cases

Time step

Time step factor for temperature

Time step factor for the axisymmetric part

Optional ADI for temperature (zero for ADI, one otherwise)

Optional ADI for velocities (same comment)

Maximum divergence residual (criterion for pressure correction)

Wave convergence parameter

Restart option

Lower meridional boundary (degrees for spherical cases, radians

for cylindrical)

Upper meridional boundary (same comment)
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Table A.2. Memory and Time Requirements for Typical GEOSIM Integrations.

Symmetric Linear Wave/Mean Nonlinear Nonlinear

only flow (1 wave) (15 waves)

Option 1 2 4 5 5

30X30 grid 0.39 (62) 0.44(127) 0.44 (223) 0.46 (229) 1.26 (2170)

50X20 grid 0.32 (65) 0.35(135) 0.35 (238) 0.38 (245) 1.25 (2429)

The first number indicates memory requirements in CRAY megawords. The number in

parenthesis is the number of seconds that were required to run 5000 time steps.
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integrals of such quantifies as kinetic energy, heat fluxes, and energy conversions. The user is

referred to the subroutines beginning with DIAG... for the definitions of the diagnostics.

A plot routine (separate from the model) runs on the IBM front-end, is menu driven, and

plots cross sections of fields (either total or components) in any one of three planes. It also

allows viewing of certain integrated diagnostics, plotted as a function of time. Because it is

unlikely that a potential user would be able to transport this code to a different installation,

documentation is not given here.
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